miércoles, 5 de diciembre de 2007

PROPIEDADES DE LOS FLUIDOS


Los fluidos, como todos los materiales, tienen propiedades físicas que permiten caracterizar y cuantificar su comportamiento así como distinguirlos de otros. Algunas de estas propiedades son exclusivas de los fluidos y otras son típicas de todas las sustancias. Características como la viscosidad, tensión superficial y presión de vapor solo se pueden definir en los líquidos y gasas. Sin embargo la masa específica, el peso específico y la densidad son atributos de cualquier materia.

Masa especifica, peso específico y densidad.
Se denomina masa específica a la cantidad de materia por unidad de volumen de una sustancia. Se designa por P y se define: P = lim ( m/ v)
v->0
El peso específico corresponde a la fuerza con que la tierra atrae a una unidad de volumen. Se designa por ß. La masa y el peso específico están relacionados por:
ß = gP
Donde g representa la intensidad del campo gravitacional.
Se denomina densidad a la relación que exista entre la masa específica de una sustancia cualquiera y una sustancia de referencia. Para los líquidos se utiliza la masa especifica del agua a 4°C como referencia, que corresponde a 1g/cm3 y para los gases se utiliza al aire con masa especifica a 20°C 1 1,013 bar de presión es 1,204 kg/m3.
Viscosidad.
La viscosidad es una propiedad distintiva de los fluidos. Esta ligada a la resistencia que opone un fluido a deformarse continuamente cuando se le somete a un esfuerzo de corte. Esta propiedad es utilizada para distinguir el comportamiento entre fluidos y sólidos. Además los fluidos pueden ser en general clasificados de acuerdo a la relación que exista entre el esfuerzo de corte aplicado y la velocidad de deformación.
Supóngase que se tiene un fluido entre dos placas paralelas separada a una distancia pequeña entre ellas, una de las cuales se mueve con respecto de la otra. Esto es lo que ocurre aproximadamente en un descanso lubricado. Para que la palca superior se mantenga en movimiento con respecto ala inferior, con una diferencia de velocidades V, es necesario aplicar una fuerza F, que por unidad se traduce en un esfuerzo de corte, ŋ = F / A, siendo A el área de la palca en contacto con el fluido. Se puede constatar además que el fluido en contacto con la placa inferior, que esta en reposo, se mantiene adherido a ella y por lo tanto no se mueve. Por otra parte, el fluido en contacto con la placa superior se mueve ala misma velocidad que ella. Si el espesor del fluido entre ambas placas es pequeño, se puede suponer que la variación de velocidades en su interior es lineal, de modo que se mantiene la proporción:
dv / dy = V/y

Compresibilidad.
La compresibilidad representa la relación entre los cambios de volumen y los cambios de presión a que esta sometido un fluido. Las variaciones de volumen pueden relacionarse directamente con variaciones de la masa específica si la cantidad de masa permanece constante. En general se sabe que en los fluidos la masa especifica depende tanto de la presión como de la temperatura de acuerdo a al ecuación de estado.



Presión de vapor.
Los fluidos en fase liquida o gaseosa dependiendo de las condiciones en que se encuentren. Las sustancias puras pueden pasar por las cuatro fases, desde sólido a plasma, según las condiciones de presión y temperatura a que estén sometidas. Se acostumbra designar líquidos a aquellos materias que bajo las condicione normales de presión y temperatura en que se encuentran en la naturaleza están en esa fase.
Cuando un liquido se le disminuye la presión a la que esta sometido hasta llegar a un nivel en el que comienza a bullir, se dice que alcanzado la presión de vapor. Esta presión depende de la temperatura. Así por ejemplo, para el agua a 100°C, la presión es de aproximadamente de 1 bar, que equivale a una atmósfera normal. La presión de vapor y la temperatura de ebullición están relacionadas y definen una línea que separa y el líquido de una misma sustancia en un grafico de presión y temperatura.


Tensión superficial.
Se ha observado que entre la interfase de dos fluidos que no se mezclan se comportan como si fuera una membrana tensa. La tensión superficial es la fuerza que se requiere para mantener en equilibrio una longitud unitaria de esta película. El valor de ella dependerá de los fluidos en contacto y de la temperatura. Los efectos de la superficial solo apreciables en fenómenos de pequeñas dimensiones, como es el caso de tubos capilares, burbujas, gotas y situaciones similares.

SISTEMA DE UNIDADES


En ingeniería es necesario cuantificar los fenómenos que ocurren y para ello se requiere expresar las cantidades en unidades convencionales. Los sistemas de unidades utilizados están basados en ciertas dimensiones básicas, o primarias, apartar de las cuales es posible definir cualquier otra utilizando para ello leyes físicas, dimensionalmente homogéneas que las relacionan. Las dimensiones básicas más usadas son: longitud, tiempo, masa y temperatura. La forma en que se seleccionan las dimensiones básicas apartar de las se pueden definir las restantes, y las unidades que se les asignan, da origen a diferentes sistemas de unidades. Desde 1971 se ha intentado universalizar el uso del denominado Sistema Internacional de Unidades, SI el cual corresponde ala extensión y el mejoramiento del tradicional sistema MKS.




PRINCIPIO DE PASCAL


La presión aplicada en un punto de un líquido contenido en un recipiente se transmite con el mismo valor a cada una de las partes del mismo.
Este enunciado, obtenido a partir de observaciones y experimentos por el físico y matemático francés Blas Pascal (1623-1662), se conoce como principio de Pascal.
El principio de Pascal puede ser interpretado como una consecuencia de la ecuación fundamental de la hidrostática y del carácter incompresible de los líquidos. En esta clase de fluidos la densidad es constante, de modo que de acuerdo con la ecuación p = po + · g · h si se aumenta la presión en la superficie libre, por ejemplo, la presión en el fondo ha de aumentar en la misma medida, ya que · g · h no varía al no hacerlo h.
La prensa hidráulica constituye la aplicación fundamental del principio de Pascal y también un dispositivo que permite entender mejor su significado. Consiste, en esencia, en dos cilindros de diferente sección comunicados entre sí, y cuyo interior está completamente lleno de un líquido que puede ser agua o aceite. Dos émbolos de secciones diferentes se ajustan, respectivamente, en cada uno de los dos cilindros, de modo que estén en contacto con el líquido. Cuando sobre el émbolo de menor sección S1 se ejerce una fuerza F1 la presión p1 que se origina en el líquido en contacto con él se transmite íntegramente y de forma instantánea a todo el resto del líquido; por tanto, será igual a la presión p2 que ejerce el líquido sobre el émbolo de mayor sección S2, es decir:
p1 = p2
con lo que:
y por tanto:
Si la sección S2 es veinte veces mayor que la S1, la fuerza F1 aplicada sobre el émbolo pequeño se ve multiplicada por veinte en el émbolo grande.
La prensa hidráulica es una máquina simple semejante a la palanca de Arquímedes, que permite amplificar la intensidad de las fuerzas y constituye el fundamento de elevadores, prensas, frenos y muchos otros dispositivos hidráulicos de maquinaria industrial.



MECANICA DE FLUIDOS


La mecánica de fluidos es la rama de la mecánica de medios continuos (que a su vez es una rama de la física) que estudia el movimiento de los fluidos (gases y líquidos). La característica fundamental que define a los fluidos es su incapacidad para resistir esfuerzos cortantes. También estudia las interacciones entre el fluido y el contorno que lo limita. La hipótesis fundamental en la que se basa toda la mecánica de fluidos es la hipótesis del medio continuo.